Introduction to Medical Liver

Steatosis/Steatohepatitis

- **Steatosis** = Abnormal accumulation of fat
- **Steatohepatitis** = Fat + inflammation and/or fibrosis

- **Macrovesicular** – Nucleus pushed to the side by large single (large droplet) or multiple small (small droplet) fat vacuoles

- **Microvesicular** – Nucleus remains central with fine fat droplets

Alcoholic Hepatitis

Hepatocyte injury and inflammation resulting from chronic alcohol consumption

- AST/ALT ratio typically >2

Micro: Steatosis, Hepatocyte **ballooning**, Neutrophilic lobular inflammation (black arrow), Mallory-Denk bodies (red arrow), pericellular fibrosis

Histology *can* be identical to NASH!

Non-Alcoholic Steatohepatitis (NASH)

Associated with **metabolic syndrome**, including obesity, type 2 diabetes, dyslipidemia, hypertension

Micro: Steatosis, Ballooning, Lobular lymphs and Neuts, Pericellular fibrosis (exception in pediatric patients, where inflammation is more portal)

Grade/Stage: NASH CRN system
Wilson’s Disease

Mutations of copper transport protein (ATP7B gene) results in inability to excrete copper in bile → accumulate copper in liver and other tissues

Variable presentation: Acute or chronic liver disease, neurologic/psychiatric findings, hemolytic anemia, ± Kayser-Fleischer rings

Labs: Low ceruloplasmin, Increased urine copper, AST/ALT ratio >2.2, Alk phos/T. Bili <4

Micro: Variable! Steatohepatitis, possible Malory-Denk bodies and glycogenated nuclei; Later chronic hepatitis

When considering diagnosis → send block for copper quantification

Total Parental Nutrition

Variable steatohepatitis or cholestasis depending on age

Infant

Kids

Adult

Steatosis/Steatohepatitis

Cholestasis

Microvesicular steatosis

Finely divided fat cells accumulate in cytoplasm as a result of Mitochondrial damage, which is often serious

DDX: Reye’s syndrome, inborn errors of metabolism, Drugs, Toxins, Acute fatty liver of pregnancy
Portal Tract Inflammation

Chronic Hepatitis C
~90% Develop chronic infection
Antibodies (anti-HCV) indicate exposure
Detection of HCV RNA indicates virus persistence
Newer Meds: Ledipasvir/sofosbuvir (Harvoni) → highly effective
Slow, silent, progressive disease (over decades)
→ cirrhosis (risk of HCC)

Micro: Various dense portal lymphocytic infiltrates
 - Periportal interface activity
 - Portal lymphoid aggregates
 - Patchy steatosis
Scattered lobular collections of inflammatory cells ± acidophil bodies

Chronic Hepatitis B
~10% Develop chronic disease

Micro: Portal chronic inflammatory infiltrates
 - Interface activity, Lobular hepatitis
 - Ground glass inclusions
 - Sanded nuclei

IHC: HBsAg = infected, HBcAg = actively replicating

Fibrosing Cholestatic Hep B: Variant with more progressive/worse disease. Usu. Immunosuppressed state (e.g., post-transplant). Extensive cholestasis, bile ductular reaction, hepatocyte swelling, and fibrosis

Autoimmune Hepatitis

Strong Female Predominance
Elevated AST/ALT (often marked)
Serology: + anti-Smooth Muscle Antibody, ANA, LKM-1, Elevated IgG

Micro: Dense portal infiltrates with marked interface activity → Lymphs & Plasma Cells
 - Lobular injury
 - Regenerative rosette formation
Can have “Overlap” with PBC
Graft-vs-host Disease (GVHD)

Usually post-stem cell transplant (transplanted immunocompetent T-cells attack new host)

Involves skin, liver, GI tract → rash, ↑LFTs, diarrhea, and vomiting

Micro: Bile duct epithelial injury (lymphocytic inflammation, withering, drop out)
Mild portal inflammation; Possible endothelitis

Rejection

Immune-mediated inflammation/damage in transplanted liver.
Classified as: Acute Cellular, Chronic, and Antibody-mediated

Acute Cellular Rejection

Micro: 1) Mixed portal tract inflammation (lymphs, including activated lymphs, Eos, etc..), 2) Bile duct damage/inflammation, 3) Endothelitis

Chronic Rejection

Micro: Bile duct injury → eventual loss/paucity
Chronic vascular damage with foam cell arteriopathy and luminal narrowing

Antibody-mediated Rejection

Micro: Portal vascular dilation, endothelial hypertrophy, and arteritis, C4d IHC showing >50% staining of vein and capillaries; Often edematous portal tract and cholestasis

Positive Serum Donor-specific Antibody (DSA)
Cholestasis/Biliary

Large Duct Obstruction

Mechanical blockage of bile ducts (by gallstones, stricture, or tumor) → usually diagnosed clinically

Micro: Portal tract edema, mixed inflammation with prominent neutrophils, and bile ductular reaction

Canalicular cholestasis

With chronic cholestasis → “feathery” degeneration at periportal interface (swollen, vacuolated hepatocytes) → Biliary cirrhosis with “Jig saw” or geographic pattern

PMNs in duct epithelium or lumen → consider acute cholangitis

Primary Biliary Cholangitis

Autoimmune disease with destruction of intrahepatic bile ducts

Usu. Older women with +AMA

Micro: “Florid duct lesion” → lymphocytic cholangitis with bile duct injury

+/− Granulomas

Often causes bile ductular reaction and bile duct paucity

Primary Sclerosing Cholangitis

Progressive fibrosis and stricturing of bile ducts—predominantly seen extrahepatic, but also intrahepatic

Often diagnosed by cholangiography (multiple strictures) → Increased risk of cholangiocarcinoma

Frequently young to middle-age men; associated with UC

Micro: Concentric fibrosis of ducts—“Onion Skin”

(not often seen on bx)

Eventual bile duct obliteration
Biliary Atresia

Idiopathic prenatal destruction/fibrosis of extrahepatic bile ducts—Most common cause of pathologic infant jaundice
Hepatobiliary scan demonstrates failure of excretion of radiotracer into duodenum. Surgical intervention with Kasai procedure and/or liver transplantation required

Micro: Large bile duct obstruction findings—(non-specific, requires clinical/radiographic correlation)

Neonatal Paucity of Intrahepatic Bile Ducts

Can by Non-syndromic or Syndromic (Alagille syndrome—JAG1 mutations; associated with other abnormalities such as cardiac and skeletal)

Micro: Interlobular bile ducts absent in > 50% of portal tracts
Ductular reaction may be present

Sepsis

Patients systemically ill with sepsis and/or bacteremia
Often jaundiced

Micro: Ductular cholestasis (“cholangitis lenta”)
Ductular reaction with inspissated bile and flattened, atrophic epithelium.
Variable acute inflammation

Drug Reaction

Most common histologic pattern of drug-induced liver injury is cholestasis
Can have several patterns:
Pure cholestasis: Cholestasis with minimal inflammation
Cholestatic hepatitis: Cholestasis with inflammation and hepatocellular damage
Prolonged cholestasis/ductopenia: > 3 months,
Sclerosing duct injury: Fibrosis affecting large bile ducts (similar to PSC)

https://livertox.nih.gov/
Lobular Injury

- Non-specific pattern, can see in many processes
- **Lobular disarray** (normal plate structure disrupted)
- **Lobulitis** (lymphs attacking hepatocytes in lobule)
- **Acidophil bodies** (apoptotic hepatocytes)

Acute Viral Hepatitis

Usu. due to Hep. A or B
Symptoms generally mild

Micro: Lobular damage and disarray
Diffuse lobular inflammation
Hepatocyte ballooning/swelling
Hepatocyte necrosis and regeneration
May see mild portal and periportal inflammation

Drug reaction

2 chief mechanisms: **Intrinsic** (predictable, dose-dependent, less inflammation, more necrosis) vs. **Idiosyncratic** (majority of cases, not dose-dependent, more inflammation)

Herbal and botanical drugs are important but often overlooked cause of hepatotoxicity

Very Diverse findings. Can mimic many other disorders (e.g., Autoimmune hepatitis)

https://livertox.nih.gov/

Idiopathic Neonatal Hepatitis

aka Neonatal giant cell hepatitis

Neonatal jaundice with hepatomegaly, elevated T. Bili and Conj. Bili, variable AST/ALT

Diagnosis of exclusion (must exclude biliary atresia)
Loose association with hypopituitarism

Micro: Lobular disarray with prominent giant cell transformation
Absent to mild lobular inflammation (despite name)
Canalicular and hepatocellular cholestasis
Minimal portal tract changes and preserved bile ducts
Altered Blood Flow

“Shock Liver”
Liver hypoperfusion of any cause
Massive elevation in AST & ALT (thousands)

Micro: Central coagulative necrosis (zone 3)
Collapse of reticulin plates

Other causes of Central Necrosis:
Acetaminophen toxicity (indistinguishable histologically)

Congestive Hepatopathy
Caused by hepatic venous outflow obstruction
Can be due to RHF, Budd-Chiari, etc...
Grossly: Nutmeg liver

Micro: Central zone sinusoidal dilatation, congestion, hepatic plate atrophy, and necrosis
Chronic cases can lead to central vein and sinusoidal fibrosis → Cirrhosis

Sinusoidal Obstruction Syndrome
aka Veno-Occlusive Disease
Sinusoidal endothelial injury; Often due to chemotherapy or Stem Cell Transplantation

Micro: Central vein obliteration (best seen on trichrome) →
Sinusoidal dilation/congestion; Sinusoidal endothelial edema

Cirrhosis
Common End-Stage for many liver disorders

Regenerative nodules surrounded by fibrosis (want to see both for Dx)

Cirrhotic tissue can fragment with small biopsies
Miscellaneous

Iron Overload *aka Hemosiderosis*

With excessive transfusions or iron supplementation

Iron accumulates in Kupffer cells (sinusoidal macrophages) first. When those are saturated, then it is deposited in hepatocytes

Hereditary Hemochromatosis

Inherited disorder of iron metabolism

HFE gene mutations cause increased iron absorption & storage

Iron accumulates first in periportal hepatocytes

→ progressively involves all zones & bile duct epithelium

Less Kupffer cell involvement (relatively)

Glycogenic Hepatopathy

Poorly-controlled diabetes → abundant glycogen stores → Hepatomegaly and elevated LFTs

A component of Mauriac Syndrome (with delayed puberty and Cushingoid features)

Micro: Diffuse glycogenation of hepatocytes

Demonstrated by PAS stain (Diastase sensitive)

Absence of inflammation

α1-Antitrypsin Deficiency

Genetic disorder characterized by abnormal α-1-antitrypsin protein synthesis

PiZZ phenotype accounts for most cases

→ Chronic liver disease and emphysema

Micro: Eosinophilic, PAS-D (+) globules within periportal hepatocytes are characteristic

Neonatal hepatitis features cholestasis and hepatocyte injury (too early for globule formation)
Acute Hepatitis
Marked Transaminitis (AST & ALT >5x normal)

- Non-Hepatotropic Virus (CMV, EBV, Adeno)
- HAV & HEV: Fecal oral transmission; only acute
- HBV: Ground Glass inclusions
- AIH: Plasma cells
- Adverse drug reaction
- Massive altered hepatic blood flow (e.g., Shock)

Chronic Hepatitis
Mild Transaminitis (AST & ALT <5x normal)

- HBV: 5% develop chronic hepatitis
- AIH: + ANA, ASMA, Elevated IgG; Interface necroinflammatory lymphoplasmacytic infiltrate
- HCV: 80% develop chronic hepatitis; nodular aggregates of lymphocytes
- Hereditary Hemochromatosis: + HFE genetic mutation
 Elevated Transferrin saturation and serum ferritin
- Wilson’s: Increased liver copper quantification; + ATP7B gene; AST/ALT ratio >2.2, Alk. Phos./T. Bili <4
- A1AT Deficiency: PiZZ phenotype, Hyaline globules in hepatocytes stain with PAS with diastase stain
- Alcoholic: Clinical history of alcohol, AST:ALT > 2, more likely to show neutrophils and Mallory’s hyaline
- NASH: Diabetes or metabolic syndrome, Obesity
- Drug reaction

Cholestatic Hepatitis
Elevated Alk Phos. & GGT; +/- Bili Jaundice

- Large duct obstruction
- PBC: Female, + AMA, IgM, lymphocytic cholangitis and florid duct lesion
- PSC: Male, IBD, diagnosed with cholangiography, concentric fibrosis around bile ducts, risk of cholangiocarcinoma
- Drug reaction

Cirrhosis/Liver Failure
Synthetic Dysfunction (Elevated INR, Low Albumin, Low platelets)